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Coupling of impurity modes in one-dimensional periodic systems

P. Royo, R. P. Stanley, and M. Ilegems
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~Received 24 November 2000; published 19 June 2001!

One-dimensional periodic dielectric structures are known to exhibit band gaps because of their symmetry.
Defect states can be found in the band gaps if an impurity layer is added to the lattice such that the symmetry
of the structure is broken. In this paper, we consider the case where a second impurity layer is added and we
discuss the existence of coupling between the two defects. We discuss the possibility of exploiting the coupling
of impurity modes in the realization of tunable wavelength emitting devices and dual-wavelength vertical-
cavity surface-emitting lasers.

DOI: 10.1103/PhysRevE.64.016604 PACS number~s!: 42.70.Qs, 42.50.2p, 42.55.Sa, 42.60.Da
b

o
It
d
p
is

k-
ec
cte
is
-

gt
n
rs
fe
p
h

ity
ty

o

n

t
r
s
of

f

f

ture

by
s
und
to

. For

ch
trix

s-
ex-

tion

rela-
s-
or-

rbed
ned
s

ergy
in-

n
s-
tant
ex
sid-
gy.
I. INTRODUCTION

Several papers have already highlighted the analogy
tween the traditional distributed Bragg reflector~DBR! and
the one-dimensional photonic crystal@1–3#: the stop band of
the DBR can be considered as an energy gap or a phot
band gap~PBG!, in which no mode can exist in the crystal.
was shown in Ref.@4# that a variable-width layer place
inside a one-dimensional periodic structure can create im
rity photon states within the photonic band gap. Within th
formalism a perfect Fabry-Pe´rot cavity is identical to a mid-
gap impurity mode. It is well known that changing the thic
ness of the impurity layer shifts the energy of the def
state. Recently, coupled-cavity structures have attra
much interest for realization of dual-wavelength laser em
sion @5–7#. Dual-section vertical cavity surface-emitting la
sers ~VCSELs! have also been used to obtain wavelen
tuning @8,9#. These structures can be considered as o
dimensional periodic structures having two impurity laye
The purpose of this paper is to discuss the existence of de
states in such structures and to investigate how they cou
It is easy to calculate the electromagnetic modes of suc
structure using standard techniques~transfer matrices!, but
this tells us little about the general behavior of impur
modes and how they couple. Therefore we use a PBG
formalism to treat the general case of two defect layers
which a coupled cavity is just one manifestation.

II. UNPERTURBED ONE-DIMENSIONAL PERIODIC
STRUCTURE

The structure we study is given in Fig. 1. It is based o
DBR structure with alternatinglBragg/4 layers of GaAs and
AlAs, wherelBragg5950 nm is the Bragg wavelength. A
this wavelength the refractive indices of GaAs and AlAs a
n253.54 andn152.96, respectively, and the index contra
is defined asn5n2 /n1.1. The corresponding thicknesses
the layers areL25lBragg/4n2 andL15lBragg/4n1. We con-
sider two impurity layers of normalized thicknessesj1 and
j2 defined such that their physical thicknesses areLc1
5j1 lBragg /n1 and Lc25j2 lBragg /n2. These layers are
placed symmetricallyP20.5 layers away from the edges o
the structure and separated byC5N22 P10.5 periods~see
1063-651X/2001/64~1!/016604~6!/$20.00 64 0166
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Fig. 1!. The integersP and C correspond to the number o
low index n1 layers.

Let us first consider the case of the unperturbed struc
with j15j251/4 and N20.552 P1C20.5 periods. The
photonic band structure can be completely determined
solving a master equation@3#: in one-dimensional structure
and for on-axis propagation, some energy gaps can be fo
for which no modes can exist in the crystal. Our purpose is
discuss the existence of defect states inside these gaps
that purpose, the use of transmission~or reflection! coeffi-
cients provides enough information. The traditional approa
to calculating these parameters is to use transfer ma
theory @10#.

By using this formalism, the complex reflection and tran
mission coefficients of the unperturbed structure can be
pressed asr N5ur Nuei wN andtN5utNuei (wN1p/2). These coef-
ficients depend on the number of periodsN, the index
contrastn, and the normalized energyẼ5lBragg /l ~we con-
sider on-axis propagation, hence the angular and polariza
dependences are not to be considered here!. For lossless
structures, the energy conservation is expressed by the
tion ur Nu21utNu251. The complex reflection and transmi
sion coefficients can be shown to be invariant under a n
malized energy translation of 2q: r N(Ẽ)5r N(Ẽ12 q) and
tN(Ẽ)5tN(Ẽ12 q) with q integer.

By using Bloch-Floquet’s theorem@10#, it is possible to
show that a plane wave cannot propagate in the unpertu
structure if its normalized energy is in the band gaps defi
by the intervals@ẼN

212q,ẼN
112q# centered on the integer

112q with ẼN
25(1/p)arccos$@(n21)224 n cos(p/N)#/(n

11)2% and ẼN
1522ẼN

2 . The integersq50,1,2, . . . corre-
spond to band numbers with increasing energies. The en
width of the band gaps is completely determined by the
dex contrastn and the number of periodsN, and hence does
not depend on the band numberq. In what follows, we con-
sider the case of the first band only; henceq50.

It is well known @10# that close to the Bragg conditio
Ẽ5112q the amplitude of the complex reflection and tran
mission coefficients of a DBR can be assumed to be cons
in energy, provided the number of periods and the ind
contrast are sufficiently high. The phase can also be con
ered to vary linearly with respect to the normalized ener
©2001 The American Physical Society04-1
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We can then approximater N and tN by

r N5%Nei D N(Ẽ2122q), ~1!

tN5tNei D N(Ẽ2122q)1 ip/2 ~2!

FIG. 1. Schematic of the one-dimensional periodic structure
vestigated in this paper. The indices of refraction are displaye
functions of the position. The high and low indices of refracti
correspond, respectively, to GaAs and AlAs~evaluated at 950 nm!.
The two impurity layers have variable thicknessesLc1 andLc2.
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for normalized energies in the stop band@ẼN
2 ,ẼN

1#. The con-
stant%N5(n2 N21)/(n2 N11) is the amplitude of the com
plex reflection coefficient at the Bragg condition, andDN is
given by @11#

DN5
p

2 F S n11

n21D%N21G . ~3!

This parameter can be related to an equivalent penetra
depth of the electromagnetic field inside the mirror@12#. It
increases continuously with the number of periodN and satu-
rates to the valuep/(n21) whenN tends to infinity.

III. ONE-DIMENSIONAL PERIODIC STRUCTURE WITH
TWO DECOUPLED IMPURITY LAYERS

Let us then consider the structure given in Fig. 1 with tw
impurity layers of arbitrary thicknessesj1,2. Using the trans-
fer matrix formalism, the transmission coefficient of th
structure is

-
as
T5
utCu2utPu4

z@12ur Cuur Puei c1#@12ur Cuur Puei c2#1utCu2ur Pu2ei (c11c2)z2
, ~4!
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on-
-

se

re
hs

of

ters

n

wherer P,C andtP,C are the complex reflection and transm
sion coefficients of unperturbed one-dimensional perio
structures withP andC periods, respectively. Using approx
mations~1! and ~2!, the phases can be expressed as

c1,254p j1,2Ẽ1~DP1DC!~Ẽ21!, ~5!

whereDP,C are calculated with expression~3! by replacing
N with P andC, respectively.

In order to analytically find the energies of the defe
states, it is necessary to determine the resonances ofT. A
general analytical solution of that problem is not know
However, if the two impurities are decoupled~which is the
case whenC@P), one can find an analytical expression
the energiesẼde f ect

1,2 corresponding to the resonances ofT:

Ẽde f ect
1,2 ~p1,2,j1,2!5

2 p p1,21DP1DC

4 p j1,21DP1DC
. ~6!

These expressions correspond to the energiesẼ1,2 of a
one-periodic structure with a single impurity layer of thic
nessj1,2. Since the impurities are decoupled, two distin
sets of solutions can be found: the indexes 1 and 2 refe
the sets of solutions associated with impurities of normali
thicknessesj1 and j2, respectively. The integersp1,2 are
twice the cavity thicknessesj1,2 at which the defect states ar
midgap impurities (Ẽde f ect

1,2 51 if and only if p1,252 j1,2).
The relation~6! gives the normalized energies of the res

nances but does not specify whether these resonance
defect states or not, that is to say, if these energies are in
c

t

.

t
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d

-
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band gap or not. We consider that a resonance can be a
ciated with a defect state when its energy satisfies the c
dition ẼN

2,Ẽ1,2(p1,2,j1,2),ẼN
1 ~the other states are con

tinuum resonances!. This inequality can be rewritten
according toj1,2

2 (p1,2),j1,2,j1,2
1 (p1,2) with

j1,2
6 ~p1,2!5

2 p p1,21~DP1DC!~12ẼN
7!

4 p ẼN
7

. ~7!

The intervals @j1,2
2 (p1,2),j1,2

1 (p1,2)# ~centered onj1,2

5p1,2/2) thus correspond to the cavity thicknessesj1,2 for
which defect states of energiesẼde f ect

1,2 (p1,2,j1,2) can exist.
We call these the allowed intervals. Their widths increa
linearly with respect to the parametersp1,2. A finite number
of intervals @j1,2

1 (p1,2),j1,2
2 (p1,211)# @centered on j1,2

5(2p1,211)/4# can exist for which no defect states a
found. We call these the forbidden intervals. Their widt
decrease asp1,2 increase; hence, forj1,2

1 (p1,2).j1,2
2 (p1,2

11), the allowed intervals start to overlap. The number
forbidden intervalsp0 is found to be

p05ceilS ẼN
2

ẼN
12ẼN

2
2

DP1DC

2 p D , ~8!

where the function ceil(x) rounds the real numberx to the
nearest integer toward plus infinity.

Figure 2 summarizes these results, using the parame
P515 andC5`. With the chosen parameters, Eq.~8! gives
a value ofp054; hence the allowed intervals overlap whe
4-2
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p1,2.p011. Several defect states can thus exist in the b
gap as soon as the impurity thicknessj1,2 becomes greate
than the critical thicknessj1,2

1 (p0). Each square of Fig. 2
corresponds to one of four possible regions of the (j1 ,j2)
plane, which we callA, B1,2, and C. The typeA regions
~displayed in dark gray on Fig. 2! correspond to the (j1 ,j2)
values such thatj1

1(p1)<j1<j1
2(p111) and j2

1(p2)<j2

<j2
2(p211). For such structures, no mode exists in t

band gap. The typeB1,2 regions~displayed in mid and light
gray on Fig. 2! correspond to the (j1 ,j2) values such tha
j1,2

1 (p1,2)<j1,2<j1,2
2 (p1,211) and j2,1

2 (p2,1)<j2,1

<j2,1
1 (p2,1). For such structures, only one mode exists in

band gap. The typeC regions~displayed in white on Fig. 2!
correspond to the (j1 ,j2) values such thatj1

2(p1)<j1

<j1
1(p1) and j2

2(p2)<j2<j2
1(p2). For such structures

two modes can exist in the band gap. It is important to n
that in this last case the two defect states are degene
whenẼde f ect

1 (p1 ,j1)5Ẽde f ect
2 (p2 ,j2). Solving this equation,

one finds that (j1 ,j2) belongs to the diagonals of the do
mains defined by the intervals@j1

2(p1),j1
1(p1)# and

@j2
2(p2),j2

1(p2)#. They are displayed as solid lines on Fi
2. These degeneracies will be lifted by introducing so
coupling between the impurities.

IV. ONE-DIMENSIONAL PERIODIC STRUCTURE WITH
TWO COUPLED IMPURITY LAYERS

For that purpose we consider the case of a finite num
of periods C separating the two impurity layers. We wi
assumej2 constant and equal to 1. The second impur

FIG. 2. First allowed and forbidden intervals of thicknesses
the two impurity layers~decoupled case!. Depending on the value
of j1,2, four types of region can exist:A ~dark gray!, B1,2 ~mid and
light gray!, andC ~white!. In these regions, zero, one, or two im
purity modes can respectively exist in the band gap. The dark l
correspond to the degenerate modes of theC-type regions.
01660
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layer thickness will be allowed to vary between 0 and 1.75
order to scan several forbidden and allowed intervals
thickness and to remain in the case where only one or
defects can exist in the band gap~typesB1 andC regions!.

Figure 3 displays the normalized energies of the def
states found for structures withC53 ~dotted line!, C58
~dashed line!, and C5` ~solid line! periods separating the
impurity layers. The band gap of these structures co
sponds to the interval of normalized energies@ẼN

2 ,ẼN
1# ~the

hatched area of Fig. 3 indicates the limits of the band ga!.
The decoupled case (C5`) is treated using Eq.~6!: the
defect state of the second impurity has an ene
Ẽde f ect

2 (p2 ,j2) constant and equal to 1. The energy of t

first defect stateẼde f ect
1 (p1 ,j1) decreases as the thicknessj1

increases. The gray and white areas in Fig. 3 correspon
the regions of typeB1 andC, for which one and two defec
states can be found, respectively. The boundaries of th
intervals can be calculated by using Eq.~6! in the decoupled
case (C5`).

The two defect states are degenerate at the positionj1
5p1/2 with p1 integer. When the two impurities are couple
this degeneracy is lifted producing an anticrossing. Th
curves are calculated by using exact simulations based on
transfer matrix method. The splitting energy can be anal
cally calculated for perfectly symmetrical structures on
(j15j251), giving @10#

DẼ5
2

DC1DP14 p
arccosS ur Cu~11ur Pu2!

2ur Pu D . ~9!

As pointed out in@5#, the splitting occurs only when
ur Cu,2ur Pu/(11ur Pu2), which shows that, if the reflectivity

f

s

FIG. 3. Normalized energiesẼa,b of the defect states found fo
the parametersC53 ~dotted line!, C58 ~dashed line!, C5` ~solid
line!, P515, j251, and plotted versusj1. As j1 varies between 0
and 1.75, regions of typeB1 and C are scanned~gray and white
areas, respectively!.
4-3
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FIG. 4. IntensitiesuEW au2 and uEW bu2 of the electromagnetic fields calculated at the normalized energiesẼde f ect
a and Ẽde f ect

b , respectively,
and plotted with respect to the position~left-hand axes!. The refractive indices of the structures are displayed on top of the figures~right-hand
axes!. The parameters of the structures areC58, P515, j150.9 ~a!, j151 ~b!, j151.1 ~c!, andj251. A schematic of the defect energie
in the coupled and decoupled cases is represented on top of each figure.
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of the coupling structureur Cu is smaller than the outer struc
ture reflectivity ur Pu, then a splitting will always be visible
~provided thatj15j251). Equation~9! shows that the split-
ting energy increases with increasing coupling strength
tween the two impurities, which shows up in Fig. 3~the
coupling decreases as the number of periodsC increases!.
This behavior is in exact analogy to that of two coupl
quantum states for which the energy splitting is proportio
01660
e-

l

to the coupling between the electron wave functions of e
state. Note that the boundaries of the forbidden intervals
thickness@j1

1(p1),j1
2(p111)# enlarge as the coupling in

creases because the degeneracy splitting tends to repe
two branches away fromj15p1/2.

For the decoupled structure, the defect states of ener
Ẽde f ect

1 (p1 ,j1) and Ẽde f ect
2 (p2 ,j2) are precisely localized in

the impurity layers of thicknessesj1 and j2, respectively.
4-4
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When the two defects are coupled, the degeneracy of s
with energies Ẽde f ect

1,2 (j15p1/2,p251) is lifted and two

states with different energiesẼde f ect
a andẼde f ect

b are created.
These states are then no longer completely localized
single impurity layer. DefiningẼde f ect

a and Ẽde f ect
b as the

high and low energy states, respectively, we can cons
them as antibonding and bonding states in analogy to
coupling between two discrete energy levels in the quan
theory.

Figures 4~a!, 4~b!, and 4~c! display on their left hand axis
the ~normalized! amplitudes of the electric fieldsuEW a,bu2 cal-
culated for the normalized energiesẼa,b for (j150.9,j2
51), (j151,j251), and (j151.1,j251), respectively. The
refractive indices of the structures are displayed on the r
hand axes of these figures. On top of each graph are sh
the energiesẼde f ect

1,2 andẼde f ect
a,b of the decoupled and couple

states, respectively. Figure 4~a! shows that the antibondin
and bonding states are mainly confined in the impurity lay
of thicknessesj1 andj2, respectively, which is not surpris
ing. Considering Fig. 3 atj150.9, the antibonding and bond
ing states clearly originate from the decoupled states rel
to the impurity layers of thicknessesj1 andj2, respectively.
The contrary is observed in Fig. 4~c! for the same reason: th
antibonding and bonding states are mainly localized in
impurities of thicknessesj2 and j1, respectively. Note tha
the localization of the electric fieldsuEW a,bu2 in the impurity
layers decreases as the coupling gets stronger. Figure~b!
shows that whenj15j251 the defect states are equal
spread in both impurity layers. The thin vertical line ind

FIG. 5. Normalized energiesẼa,b of the defect states found fo
the parametersC53 ~dotted line!, C58 ~dashed line!, C5` ~solid
line!, P515, j250.75 and plotted versusj1. As j1 varies between
0 and 1.75, regions of typeA and B2 are scanned~dark and light
gray areas, respectively!.
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cates that these two states have opposite symmetry: as c
expected from the analogy to two coupled quantum sta
the bonding state is symmetric and the antibonding stat
antisymmetric.

Figure 5 displays the normalized energies of the def
states found for structures withC53 ~dotted line!, C58
~dashed line!, andC5` ~solid line! periods separating im
purity layers of thicknessesj1 ~variable! andj253/4 ~fixed!.
As in Fig. 3, the band-gap limits are indicated by horizon

lines atẼ5ẼN
6 . As j1 increases from 0 to 1.75, regions o

typesA andB2 ~represented in Fig. 5 as dark and light gr
areas, respectively! are scanned. Because one mode can e
at most, the energy of the impurity mode does not depend
the coupling strength. The defect state~when it exists! is
always localized in the impurity layer of thicknessj1, what-
everj1 is.

V. PRACTICAL APPLICATIONS

Considering Fig. 2, four kinds of structure can be realiz
with different mode properties~provided the impurity layer
thicknesses are such thatp1,2,p011 as previously men-
tioned!. Structures of typeA display a mirrorlike behavior
and correspond to distributed Bragg reflectors. Structure
typeB1,2 exhibit a single mode in the band gap and are u
for realization of vertical cavity surface-emitting lasers wh
operated in the stimulated regime@13# and resonant cavity
light-emitting diodes@14# when operated in the spontaneo
regime.

Considering the results displayed in Figs. 3 and 5, o
sees that it is possible to shift the energies of the defect st
by changing the thickness of one impurity layer while kee
ing the thickness of the other constant. This effect has
portant practical applications in realization of densely pack
two-dimensional arrays of multiwavelength-emitting VC
SELs used in wavelength division multiplexing systems.
type B2 structures, one impurity layer has a fixed thickne
j25(112 p2)/4 (p2 integer! whereas the second impurit
layer is tuned aroundj15p1/2 (p1 integer! so as to shift the
energy of the single defect state in the band gap. Typic
j251/4 andj1 is tuned around 1@4#. This solution is diffi-
cult to use in practice because the tuning layer has to be
the active layer~the electromagnetic field of the defect sta
is indeed almost completely localized in this layer!. Hence
changing its thickness is difficult to perform without intro
ducing some nonradiative recombination centers. This t
of structure is generally fabricated by using unconventio
growth techniques with variation of the growth conditio
~temperature, for example! over the wafer@8# or in situ
masking techniques@15#.

In typeB1 structures, one impurity layer has a fixed thic
nessj25p2/2 (p2 integer! whereas the second impurity laye
is tuned aroundj15(112p1)/4 (p1 integer! so as to shift
the energy of the single defect state in the band gap. T
cally j251 andj1 is tuned around 1/4 or 3/4. These stru
tures are of great interest because they offer the possibilit
4-5
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strongly localizing a single impurity mode in one layer a
controlling its energy by adjusting the thickness of the ot
impurity layer. This makes possible practical control of t
tuning layer thickness without degrading the active impur
layer. Because of the coupling between the two defect st
represented in Fig. 3, the degeneracy of the two impu
modes atj15p1/2 is lifted, which modifies the slope of th
Ẽde f ect

a,b (j1) curves atj15(112 p1)/4 with p1 integer. This
slope is zero for the decoupled case (C5`), and increases
up to a maximum when the coupling is the strongestC
51). The tunability is maximum whenp150 and decrease
as p1 increases, which is not surprising because of Eq.~6!.
Many practical applications of such structures can be fo
in the literature. The modification of the thickness of t
tuning layer can be obtained by oxidation techniques@9,16#
or etch and regrowth techniques@17,18#, for example.

For structures of typeC, the two modes existing in the
band gap are partially localized in each impurity layer, wh
makes possible realization of dual-wavelength laser emis
as demonstrated by@6# and@19#. By choosing active-passiv
configurations, it is also possible to design numerous dev
like integrated optical disk readout heads using a VCS
with an intracavity quantum-well absorber@20#, coupled
resonator vertical cavity lasers for modulation of the out
power@21#, or three-contact VCSELs demonstrating applic
tions like optical intensity modulation, phase and amplitu
modulation of a microwave optical subcarrier, optical bis
bility, or self-pulsation@22#.
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VI. CONCLUSION

In conclusion, in this paper we have studied the existe
of coupled impurity modes in a one-dimensional period
structure. We have shown that for decoupled impurit
simple analytical expressions can be obtained allowing
to predict the number of defect states in the band gap
their energies. The case of coupled impurities is numeric
investigated and can be simply predicted assuming that
degeneracy of decoupled states is lifted by the coupling
simple analogy between two coupled impurities and t
coupled quantum levels shows that for symmetrical str
tures the highest energy state can be identified as an anti
metric antibonding state, whereas the lowest energy state
be identified as a symmetric bonding state. The impu
mode coupling approach explains also when and why wa
length tunability can be expected for vertical cavity surfac
emitting structures.
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