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Coupling of impurity modes in one-dimensional periodic systems
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One-dimensional periodic dielectric structures are known to exhibit band gaps because of their symmetry.
Defect states can be found in the band gaps if an impurity layer is added to the lattice such that the symmetry
of the structure is broken. In this paper, we consider the case where a second impurity layer is added and we
discuss the existence of coupling between the two defects. We discuss the possibility of exploiting the coupling
of impurity modes in the realization of tunable wavelength emitting devices and dual-wavelength vertical-
cavity surface-emitting lasers.
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I. INTRODUCTION Fig. 1. The integers? and C correspond to the number of
low index n, layers.

Several papers have already highlighted the analogy be- Let us first consider the case of the unperturbed structure
tween the traditional distributed Bragg reflect®@BR) and  with &,=§,=1/4 andN—0.5=2P+C—0.5 periods. The
the one-dimensional photonic crysfal3|: the stop band of photonic band structure can be completely determined by
the DBR can be considered as an energy gap or a photongolving a master equatidi3]: in one-dimensional structures
band gagPBG), in which no mode can exist in the crystal. It and for on-axis propagation, some energy gaps can be found
was shown in Ref[4] that a variable-width layer placed for which no modes can exist in the crystal. Our purpose is to
inside a one-dimensional periodic structure can create impuiscuss the existence of defect states inside these gaps. For
rity photon states within the photonic band gap. Within thisthat purpose, the use of transmissi@n reflection coeffi-
formalism a perfect Fabry-Pet cavity is identical to a mid-  cjents provides enough information. The traditional approach
gap impurity mode. It is well known that changing the thick- t calculating these parameters is to use transfer matrix
ness of the impurity layer shifts the energy of the defec‘theory[lO].
state. Recently, coupled-cavity structures have attracted By using this formalism, the complex reflection and trans-
much interest for realization of dual-wavelength laser emisipisqinn coefficients of the unperturbed structure can be ex-
sion [5—7]. Dual-section vertical cavity surfac_e-emlttlng la- pressed asy=|ry|€' “N andty=|ty|€' (*n* 72, These coef-
sers(VCSELs have also been used to obtain wavelengthoients depend on the number of periods the index
tuning [8,9]. These structures can be considered as one- . ~
dimensional periodic structures having two impurity Iayers.C_Ontrasm' a_nd the normallzed energy=NX\grag/ (We con-
The purpose of this paper is to discuss the existence of defegider on-axis propagation, hence th_e angular and polarization
states in such structures and to investigate how they coupl _ependences are not to be cop3|d_ered )hefer lossless
It is easy to calculate the electromagnetic modes of such atructures, the energy conservation is expressed by the rela-

structure using standard techniquésnsfer matrices but tion |rN|2+_|_tN|2:1' The complex reﬂe_ctlon_ and transmis-

this tells us little about the general behavior of impurity SION coefficients can be shown to be invariant under a nor-

modes and how they couple. Therefore we use a PBG typ&alized energy translation ofq2 ry(E)=ry(E+2q) and

formalism to treat the general case of two defect layers ofy(E)=ty\(E+2 q) with q integer.

which a coupled cavity is just one manifestation. By using Bloch-Floquet's theorefil0], it is possible to
show that a plane wave cannot propagate in the unperturbed
structure if its normalized energy is in the band gaps defined

Il. UNPERTURBED ONE-DIMENSIONAL PERIODIC by the interval5[~E,]+2q,E§+2q] centered on the integers
STRUCTURE 1+2q with Ey = (1/7)arcco$[ (n—1)2—4 n cos(m/N)]/(n

The structure we study is given in Fig. 1. It is based on a+1)?} andEy=2—E, . The integersy=0,1,2 ... corre-
DBR structure with alternatingg,,44/4 layers of GaAs and spond to band numbers with increasing energies. The energy
AlAs, where \g;aq4=950 nm is the Bragg wavelength. At width of the band gaps is completely determined by the in-
this wavelength the refractive indices of GaAs and AlAs aredex contrash and the number of periods, and hence does
n,=3.54 andn,=2.96, respectively, and the index contrastnot depend on the band numkeerin what follows, we con-
is defined am=n,/n,;>1. The corresponding thicknesses of sider the case of the first band only; henrre0.
the layers aré ,=N\pag4/4 N, andL;=\gaq44n;. We con- It is well known [10] that close to the Bragg condition
sider two impurity layers of normalized thicknessgsand ~ E=1+2q the amplitude of the complex reflection and trans-
&, defined such that their physical thicknesses agg  mission coefficients of a DBR can be assumed to be constant
=&1 Ngragg/N1 and Lp=§; Ngragg/N2- These layers are in energy, provided the number of periods and the index
placed symmetricallf? — 0.5 layers away from the edges of contrast are sufficiently high. The phase can also be consid-
the structure and separated 8= N—2 P+ 0.5 periodgsee  ered to vary linearly with respect to the normalized energy.
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Index of refraction

Lo L. L for normalized energies in the stop b, ,E; ]. The con-
stantoy=(n?N—1)/(n>N+1) is the amplitude of the com-
plex reflection coefficient at the Bragg condition, abg is
given by[11]

T

n+1 1
n—1 On—41].

FIG. 1. Schematic of the one-dimensional periodic structure in-ThIS parameter can be related to an equivalent penetration

vestigated in this paper. The indices of refraction are displayed agepth of the e!ectromagnetlc field inside the mirfte]. It
functions of the position. The high and low indices of refraction Increases continuously with the number of pefiodnd satu-

correspond, respectively, to GaAs and Alvaluated at 950 nm  'ates to the valuer/(n—1) whenN tends to infinity.
The two impurity layers have variable thicknesses andL .

o -
P-0.5 periods C-0.5 periods P-0.5 periods D ==
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IIl. ONE-DIMENSIONAL PERIODIC STRUCTURE WITH
We can then approximatg; andty by TWO DECOUPLED IMPURITY LAYERS

Let us then consider the structure given in Fig. 1 with two
impurity layers of arbitrary thicknesség ,. Using the trans-
fer matrix formalism, the transmission coefficient of the
structure is

rN:QNeiDN(E—l—Zq)’ 1)

tN=7-Nei DN(E-1-2q)+in/2 2)

Jtc|[tp|*

T= - - - ,
[[1—|rclrple' I 1—[rc|lrple' ¥2]+|tc|?|r p|2e! Pt V22

(4)

whererp ¢ andtp ¢ are the complex reflection and transmis- band gap or not. We consider that a resonance can be asso-
sion coefficients of unperturbed one-dimensional periodiciated with a defect state when its energy satisfies the con-
structures withP andC periods, respectively. Using approxi- dition "E,Q<'E112(p1,2,§12)<ﬁ,§ (the other states are con-
mations(1) and(2), the phases can be expressed as tinuum resonances This inequality can be rewritten

according tof; APy ) <& o< Ef,z( P12 with

Yn2=47 €18+ (DptDe)(E-1), (5) .

. . . +(Dp+ —Eg
whereD5p ¢ are calculated with expressidB) by replacing EiApro)= 27 P12t (De fiC)(l EN). @
N with P and C, respectively. o 4 TEY

In order to analytically find the energies of the defect . . N
states, it is necessary to determine the resonancds Af The intervals [£; AP1,2).61AP1,2)] (centered oné;,

general analytical solution of that problem is not known.=P122) thus correspond to the cavity thicknesggs for
However, if the two impurities are decoupléathich is the  which defect states of energi&§iec(P1.2,£12) can exist.
case wherC>P), one can find an analytical expression of We call these the allowed intervals. Their widths increase

the energie€ %, corresponding to the resonancesTof ~linearly with respect to the parametgns,. A finite number
of intervals [fiz(plyz),giz(plvz-i- 1)] [centered oné;,
2mpyotDp+De =(2p1o+1)/4] can exist for which no defect states are

Efliec P12 €10 = (6)

found. We call these the forbidden intervals. Their widths
decrease a9, increase; hence, fogfz(p1,2)>§l"2(pl,2
These expressions correspond to the enerE‘;i@§ of a  +1), the allowed intervals start to overlap. The number of
one-periodic structure with a single impurity layer of thick- forbidden intervalg, is found to be
nessé;,. Since the impurities are decoupled, two distinct _
sets of solutions can be found: the indexes 1 and 2 refer to . En Dp+Dc
the sets of solutions associated with impurities of normalized Po= Ce'l( Ef_E- T on
thicknessest; and &, respectively. The integerp, , are NN
twice the cavity thicknesses , at which the defect states are \yhere the function ceik) rounds the real number to the
midgap impurities Egec=1 if and only if p; ;=2 &, ). nearest integer toward plus infinity.
The relation(6) gives the normalized energies of the reso-  Figure 2 summarizes these results, using the parameters
nances but does not specify whether these resonances dPe=15 andC=c. With the chosen parameters, Ef) gives
defect states or not, that is to say, if these energies are in treevalue ofpy=4; hence the allowed intervals overlap when

4 7T§1y2+ DP+ DC ’

: ®)
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FIG. 2. First allowed and forbidden intervals of thicknesses of

the two impurity layergdecoupled cageDepending on the values
of £, ,, four types of region can exis& (dark gray, B; , (mid and
light gray), andC (white). In these regions, zero, one, or two im-

purity modes can respectively exist in the band gap. The dark line

correspond to the degenerate modes ofGHgpe regions.

p12>po+ 1. Several defect states can thus exist in the ban

gap as soon as the impurity thickness, becomes greater
than the critical thicknesgflfz(po). Each square of Fig. 2
corresponds to one of four possible regions of the, §,)
plane, which we callA, B;,, and C. The typeA regions
(displayed in dark gray on Fig.) Zorrespond to the&;,¢,)
values such thaty (p;)<é;<¢&; (pi+1) and&; (p2) <&

=<¢§, (pot+1). For such structures, no mode exists in the

band gap. The typ8, , regions(displayed in mid and light
gray on Fig. 2 correspond to the§;,¢,) values such that
§1z(p12)<§12 &1.AP121+1) and &E21(P2)=<&21

<£34(p2.41). For such structures, only one mode exists in the Edetec

band gap. The typ€ regions(displayed in white on Fig. )2
correspond to the &;,&,) values such that; (p1)<¢;
<& (p1) and & (py)<£&<£&;(py). For such structures,

two modes can exist in the band gap. It is important to not
that in this last case the two defect states are degenera('l?;zoIS

WhenEdqec(P1,1) = Ederec( P2, £2). Solving this equation,

one finds that §;,&,) belongs to the diagonals of the do-

mains defined by the interval$é; (ps),&;(p1)] and
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FIG. 3. Normalized energie"éa,b of the defect states found for

the parameter€ = 3 (dotted ling, C=8 (dashed ling C= (solid
line), P=15, &,=
and 1.75, regions of typB, and C are scannedgray and white

areas, respectively

1, and plotted versu§;. As &; varies between 0

layer thickness will be allowed to vary between 0 and 1.75 in
rder to scan several forbidden and allowed intervals of
ickness and to remain in the case where only one or two
defects can exist in the band géppesB; and C regions.
Figure 3 displays the normalized energies of the defect
states found for structures witB@=3 (dotted ling, C=8
(dashed ling andC=o (solid line) periods separating the
impurity layers. The band gap of these structures corre-

sponds to the interval of normalized enerdigs, ,Ey ] (the
hatched area of Fig. 3 indicates the limits of the band).gap
The decoupled caseC=«) is treated using Eq(6): the
defect state of the second impurity has an energy
(p2,&,) constant and equal to 1. The energy of the

first defect stat& ] ..(P1,£1) decreases as the thickness
increases. The gray and white areas in Fig. 3 correspond to
the regions of typd3; andC, for which one and two defect

tates can be found, respectively. The boundaries of these
tervals can be calculated by using E6). in the decoupled
e C=w).

The two defect states are degenerate at the positjpns

=p,/2 with p; integer. When the two impurities are coupled,
this degeneracy is lifted producing an anticrossing. These

[£, (p2).£; (P2)]. They are displayed as solid lines on Fig. curves are calculated by using exact simulations based on the
2. These degeneracies will be lifted by introducing someransfer matrix method. The splitting energy can be analyti-

coupling between the impurities.

IV. ONE-DIMENSIONAL PERIODIC STRUCTURE WITH
TWO COUPLED IMPURITY LAYERS

cally calculated for perfectly symmetrical structures only
(§1=¢,=1), giving [10]
~ 2

AE= DC+DP+4Warcco% 9)

|rC|(1+|rP|2))
2rp|

For that purpose we consider the case of a finite number

of periodsC separating the two impurity layers. We will

As pointed out in[5], the splitting occurs only when

assume¢, constant and equal to 1. The second impurity|rc|<2|rp|/(1+]rp|?), which shows that, if the reflectivity
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FIG. 4. Intensitie§E,|? and|E,|? of the electromagnetic fields calculated at the normalized enekgigs.,andElq cc respectively,
and plotted with respect to the positi@eft-hand axes The refractive indices of the structures are displayed on top of the figigbs-hand
axes. The parameters of the structures @re 8, P=15, £,=0.9(a), £,=1 (b), £,=1.1(c), andé,=1. A schematic of the defect energies
in the coupled and decoupled cases is represented on top of each figure.

of the coupling structurér ¢| is smaller than the outer struc- to the coupling between the electron wave functions of each
ture reflectivity |rp|, then a splitting will always be visible state. Note that the boundaries of the forbidden intervals of
(provided thatt; = &,= 1). Equation(9) shows that the split- thickness[&; (p1).&; (p1+1)] enlarge as the coupling in-
ting energy increases with increasing coupling strength besreases because the degeneracy splitting tends to repel the
tween the two impurities, which shows up in Fig.(he two branches away frorf; = p,/2.

coupling decreases as the number of peri6dmcreases For the decoupled structure, the defect states of energies
This behavior is in exact analogy to that of two coupledEl ec(P1,£1) andE3qec(P2.£2) are precisely localized in
guantum states for which the energy splitting is proportionathe impurity layers of thicknessed and &,, respectively.
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% a ﬁ ﬁ ﬁ ﬁ cates that these two states have opposite symmetry: as can be
) g g expected from the analogy to two coupled quantum states,
SO = PR the bonding state is symmetric and the antibonding state is
106 PP antisymmetric, | |
E_ Figure 5 displays the normalized energies of the defect
2 148 states found for structures witb=3 (dotted ling, C=8
T (dashed ling andC=x (solid line) periods separating im-
(<§ i purity layers of thicknesse, (variable and &,= 3/4 (fixed).
zé ’ As in Fig. 3, the band-gap limits are indicated by horizontal
; lines atE=Ey . As £, increases from 0 to 1.75, regions of
? typesA andB, (represented in Fig. 5 as dark and light gray
E i areas, respectivelyare scanned. Because one mode can exist
2 98 at most, the energy of the impurity mode does not depend on
g the coupling strength. The defect stdtehen it exist$ is
3 0.96 always localized in the impurity layer of thickne&s, what-

= ever¢; is.

0.94

0 025 05 075 1 125 1.5 175

V. PRACTICAL APPLICATIONS
Normalized thickness & |

Considering Fig. 2, four kinds of structure can be realized
FIG. 5. Normalized energiei, ,, of the defect states found for with different mode propertiegprovided the impurity layer
the parameter€ =3 (dotted ling, C=8 (dashed ling C=c< (solid  thicknesses are such thpt ,<py+1 as previously men-
line), P=15, £,=0.75 and plotted versu§ . As ¢, varies between  tjoneq. Structures of typeA display a mirrorlike behavior
0 and 1.75, regions of typd andB, are scanneddark and light o4 correspond to distributed Bragg reflectors. Structures of
gray areas, respectively type B, , exhibit a single mode in the band gap and are used
for realization of vertical cavity surface-emitting lasers when

erated in the stimulated regini#3] and resonant cavity
When the two defects are coupled, the degeneracy of stat |§ht-emitting diodeqd 14] when operated in the spontaneous

with energiesE 2 (é1=p1/2.p,=1) is lifted and two regime

states with different energids], (. andEge e are created. Considering the results displayed in Figs. 3 and 5, one
These states are then no longer completely localized in gees that it is possible to shift the energies of the defect states
single impurity layer. DefiningE3 ., and Efqrecr @S the by changing the thickness of one impurity layer while keep-
high and low energy states, respectively, we can considdng the thickness of the other constant. This effect has im-
them as antibonding and bonding states in analogy to thgortant practical applications in realization of densely packed
coupling between two discrete energy levels in the quantunwo-dimensional arrays of multiwavelength-emitting VC-
theory. _ _ ~ SELs used in wavelength division multiplexing systems. In
Figures 4a), 4(b), and 4c) display on their IefE hand axis  type B, structures, one impurity layer has a fixed thickness
the (normalized amplitudes of the electric fie|danb|2 cal-  &=(1+2p,)/4 (p, intege) whereas the second impurity
culated for the normalized energidz:sa,b for (£,=0.9¢, layeris tuned around;=p;/2 (p; integey so as to shift the
=1), (§&1=14,=1),and ¢,=1.1£,=1), respectively. The energy of the single defect state in the band gap. Typically
refractive indices of the structures are displayed on the righg,=1/4 andé¢; is tuned around 14]. This solution is diffi-
hand axes of these figures. On top of each graph are showgult to use in practice because the tuning layer has to be also
the energie& 2 ..,andE3Y . ..of the decoupled and coupled the active layeithe electromagnetic field of the defect state
states, respectively. Figurda} shows that the antibonding is indeed almost completely localized in this layerence
and bonding states are mainly confined in the impurity layershanging its thickness is difficult to perform without intro-
of thicknesseg; and &,, respectively, which is not surpris- ducing some nonradiative recombination centers. This type
ing. Considering Fig. 3 af;=0.9, the antibonding and bond- of structure is generally fabricated by using unconventional
ing states clearly originate from the decoupled states relategrowth techniques with variation of the growth conditions
to the impurity layers of thicknesség and&,, respectively.  (temperature, for exampleover the wafer[8] or in situ
The contrary is observed in Fig(e} for the same reason: the masking techniquefl5].
antibonding and bonding states are mainly localized in the | type B, structures, one impurity layer has a fixed thick-
impurities of thicknesseg, and &;, respectively. Note that nessg,=p./2 (p, intege) whereas the second impurity layer
the localization of the electric fieldéa,b|2 in the impurity  is tuned aroundt;=(1+2p;)/4 (p; intege) so as to shift
layers decreases as the coupling gets stronger. Figlwe 4 the energy of the single defect state in the band gap. Typi-
shows that wheré;=¢&,=1 the defect states are equally cally £&,=1 and§; is tuned around 1/4 or 3/4. These struc-
spread in both impurity layers. The thin vertical line indi- tures are of great interest because they offer the possibility of
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strongly localizing a single impurity mode in one layer and VI. CONCLUSION
controlling its energy by adjusting the thickness of the other
impurity layer. This makes possible practical control of the
tuning layer thickness without degrading the active impurity

In conclusion, in this paper we have studied the existence
of coupled impurity modes in a one-dimensional periodic
structure. We have shown that for decoupled impurities
- X &imple analytical expressions can be obtained allowing one
represented in Fig. 3, the degeneracy of the two impurity, predict the number of defect states in the band gap and
modes a&,=p,/2 is lifted, which modifies the slope of the their energies. The case of coupled impurities is numerically
Eg'ebfec(gl) curves até;=(1+2 p,)/4 with p, integer. This investigated and can be simply predicted assuming that the
slope is zero for the decoupled case={><), and increases d_egeneracy of decoupled states is Iifted. by tht_e coupling. A
up to a maximum when the coupling is the strongest ( simple analogy between two coupled impurities and two
:1) The tunab|||ty is maximum Whep1=0 and decreases COUpIEd quantum levels shows that for Symmetrlcal struc-
asp; increases, which is not surprising because of @y.  tures the highest energy state can be identified as an antisym-
Many practical applications of such structures can be foundnetric antibonding state, whereas the lowest energy state can
in the literature. The modification of the thickness of theP® |dent|f|eq as a symmetric .bondmg state. The impurity
tuning layer can be obtained by oxidation technig&46] mode coupling approach explains also W_hen and_ why wave-
or etch and regrowth techniquEk?, 18, for example length tunability can be expected for vertical cavity surface-

For structures of typ&, the two modes existing in the €Mitling structures.
band gap are partially localized in each impurity layer, which
makes possible realization of dual-wavelength laser emission
as demonstrated H¥| and[19]. By choosing active-passive One of the authordP.R) would like to acknowledge
configurations, it is also possible to design numerous devicelslichael Moser(Avalon Photonics Ltd, Badenerstrasse 569,
like integrated optical disk readout heads using a VCSELCH-8048 Zurich, Switzerlandfor launching this line of
with an intracavity quantum-well absorb¢R0], coupled study and for helpful discussions. This work was supported
resonator vertical cavity lasers for modulation of the outputunder a joint Centre Suisse d’ELectronique et de Microtech-
power[21], or three-contact VCSELs demonstrating applica-nique (CSEM) (Switzerland and Ecole Polytechnique &e
tions like optical intensity modulation, phase and amplitudeerale de Lausanné€EPFL) (Switzerland program, and by the
modulation of a microwave optical subcarrier, optical bista-European Commission within the framework of the ESPRIT-
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